Biostat 537: Survival Analaysis TA Session 3

Ethan Ashby

January 22, 2024

・ロト・日本・日本・日本・日本・日本

Ethan Ashby

A Review of Last time

- Parametric survival models assume a particular shape of the distribution of survival times, which are governed by a finite set of parameters.
- We showed parametric models are convenient for estimation and converting between hazards, survival functions, and single-number summaries of the survival experience.
- 3 Maximum likelihood enables estimation and inference on the parameters from data.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Some HW 1 Concepts to Review

1 Truncation

- Truncation versus censoring.
- **2** Truncation \subset Selection Bias.
- **3** Redefining time origin (t = 0).
- (2) 'fitparametric' capabilities "mean", "quantile", "survival", "condsurvival"
- 3 Significance testing
 - Goodness of fit (different models fit to same data): likelihood ratio test
 - 2 Comparing survival distribution between parametric models: Wald test on derived model parameters
 - 3 Comparing survival distributiosn nonparametrically: Logrank test or variant.

Ethan Ashby		
Lecture 3		

Session Overview

2 Nonparametric Estimation of Other Survival Quantities

3 Nonparametric comparison Survival Curves

・ロト・日本・日本・日本・日本 もくの

Ethan Ashby

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Why go nonparametric?

The use of parametric models are often justified using

- 1 Convenience: ease of converting between survival quantities of interest, relatively simple estimation.
- 2 Efficient: *when correctly specified*, parametric models produce estimators w/ smallest possible variances.

Reasons why we may want to go nonparametric

- 1 Agnosticism around choice of model.
- 2 True survival experience unlikely to adhere to rigid parametric assumptions.
- 3 Conclusions that avoid making non-essential statistical assumptions.

Ethan Ashby			
ecture 3			

Nonpar	Other	Logrank
o●ooooooooo	0000000	00000000000

Motivating Example for Kaplan-Meier Estimator

Consider the following survival data. Unique event times in red.

Patient	Survival Time	Status
1	7	0
2	6	1
3	6	0
4	5	0
5	2	1
6	4	1

Suppose we wish to estimate the survival function S(t) without making parametric assumptions on the shape of the distribution of survival times.

			_	
Ethan Ashby				
Lecture 3				

Kaplan-Meier Curve Example

Suppose we construct the following table where t_i denotes a specific time of interest, n_i are the number of participants in the *risk set*, d_i are the number of events that occurred at t_i , q_i are the number censored at t_i .

ti	ni	di	q_i	P (Event at t_i At Risk at t_i) $= \frac{d_i}{n_i}$
1	6	0	0	0 6
2	6	1	0	$\frac{1}{6}$
3	5	0	0	<u>0</u> 5
4	5	1	0	1 5
5	4	0	1	<u>0</u> 4
6	3	1	1	1 3
7	1	0	1	<u>0</u>

Ethan Ashby

Kaplan-Meier Curve Example

Suppose we are interested in estimating the survivor curve

 $S(t) = P(T \ge t)$

We can break time into a bunch of intervals of unit length.

$$S(t) = P(T \ge t | T \ge t - 1) \times P(T \ge t - 1)$$

= $P(T \ge t | T \ge t - 1) \times S(t - 1)$
....lterate
= $\prod_{i=1}^{t} P(T \ge i | T \ge i - 1)$
= $\prod_{i=1}^{t} (1 - P(T \le i | T \ge i - 1))$
= $\prod_{i=1}^{t} (1 - P(\text{Event at time } i | \text{At Risk at Time } i))$

Ethan Ashby

Kaplan-Meier Curve Example

$$S(t) = \prod_{i=1}^{t} (1 - P(\text{Event at time } i | \text{At Risk at Time } i))$$

We can estimate pink term using the observed number of events at time *i* over the observed number at risk at time *i*.

 \hat{P} (Event at time *i*|At Risk at Time *i*) = $\frac{d_i}{n_i}$

Yielding

$$\hat{S}(t) = \prod_{i=1}^{t} \left(1 - \frac{d_i}{n_i}\right)$$

Ethan Ashby

Kaplan-Meier Curve Example

So far

$$\hat{S}(t) = \prod_{i=1}^{t} \left(1 - \frac{d_i}{n_i} \right)$$

Recall that $d_i \neq 0$ if and only if an event ($d_i = 1$) occurred at time *i*. Hence, it suffices to consider the *product over the failure times*, $t_i \leq t$:

$$\hat{S}(t) = \prod_{t_i \leq t} \left(1 - \frac{d_i}{n_i}\right)$$

- * ロ * * 御 * * 臣 * * 臣 * * 日 * * の < @

Ethan Ashby

Kaplan-Meier Curve Example

ti	ni	di	q_i	$\hat{P}(\text{Event at } t_i \text{At Risk at } t_i) = rac{d_i}{n_i}$	$\hat{S}(t) = \prod_{t_i \leq t} \left(1 - rac{d_i}{n_i} ight)$
0	6	0	0	0 6	$\left(1-\frac{0}{6}\right)=1$
1	6	0	0	$\frac{0}{6}$	$\left(1-\frac{0}{6}\right)=1$
2	6	1	0	<u>1</u> 6	$1\cdot\left(1-\tfrac{1}{6}\right)=\tfrac{5}{6}$
3	5	0	0	<u>0</u> 5	$\tfrac{5}{6} \cdot \left(1 - \tfrac{0}{5}\right) = \tfrac{5}{6}$
4	5	1	0	<u>1</u> 5	$\tfrac{5}{6} \cdot \left(1 - \tfrac{1}{5}\right) = \tfrac{2}{3}$
5	4	0	1	<u>0</u> 4	$\tfrac{2}{3} \cdot \left(1 - \tfrac{0}{4}\right) = \tfrac{2}{3}$
6	3	1	1	<u>1</u> 3	$\tfrac{2}{3} \cdot \left(1 - \tfrac{1}{3}\right) = \tfrac{4}{9}$
7	1	0	1	<u>0</u> 1	$\tfrac{4}{9} \cdot \left(1 - \tfrac{0}{1} \right) = \tfrac{4}{9}$
	I	I	I		1

▲ロト▲舂▶▲巻▶▲巻▶ 巻 のなぐ

Ethan Ashby

Kaplan-Meier Curve Example

Ethan Ashby

The Kaplan-Meier Estimator

The Kaplan-Meier Estimator is the product over the failure times of the conditional probabilities of surviving to the next failure time.

$$\hat{S}(t) = \prod_{t_i \leq t} \left(1 - \frac{d_i}{n_i}\right)$$

Where n_i is the number of individuals in the risk set at time t_i and d_i is the number of individuals who failed at time t_i .

Ethan Ashby

The Kaplan-Meier Estimator

$$\hat{S}(t) = \prod_{t_i \leq t} \left(1 - \frac{d_i}{n_i}\right)$$

The Kaplan-Meier (KM) estimator

- 1 Makes no assumptions on the distribution of event times.
- 2 Accommodates censored data by letting censored observations contribute to the risk set *n_i*.
- 3 Assumes Non-informative Censoring: $\hat{P}(\text{Event at } t_i | \text{At Risk at } t_i) = \frac{d_i}{n_i}$ unbiased for $P(\text{Event at } t_i | \text{At Risk at } t_i).$

4 Assumes that survival is constant between observed events.

	< □ ▶	< 🗗 ▶	< ≣⇒	- < ≣ ▶	- 2	200
--	-------	-------	------	---------	-----	-----

Ethan Ashby

NPMLE

The K-M estimator can be considered as the maximum likelihood estimator of the discrete hazard function. Let h_i be the hazard of experiencing an event at time t_i .

$$S(t)=\prod_{t_i\leq t}\left(1-h_i\right)$$

Since failures are Bernoulli events, a binomial likelihood up to time t_i can be written as

$$L(h_j; j \leq i) = \prod_{j=1}^i h_j^{d_j} (1-h_j)^{n_j-d_j} \begin{pmatrix} n_j \\ d_j \end{pmatrix}$$

Hence, the maximum likelihood estimator for h_i is given by

$$\hat{h}_j = rac{d_j}{n_j}$$

Plugging in \hat{h}_j for h_j above gives the KM estimator.

Ethan Ashby

R example

¹ #Calculate KM estimator

- 2 library(survival)
- 3 tt<-c(7,6,6,5,2,4)
- 4 cens<-c(0,1,0,0,1,1)
- 5 Surv(tt, cens) #formatted as time to event
- 6 result.km<-survfit(Surv(tt,cens)~1,conf.type="log-log")</pre>
- 7 summary(result.km) #output table
- 8 plot(result.km) #plot KM curve w/ pointwise Cls

Ethan Ashby

Nelson-Aalen Estimator

Suppose we wish to estimate the cumulative hazard.

$$H(t) = \sum_{t_i \leq t} \frac{d_i}{n_i}$$

And recognizing that $S(t) = e^{-H(t)}$, we have similar estimator of the survival function. In R, we we fit it as follows.

Ethan Ashby

Single-Number Summaries of the Survival Experience

We may be interested in the median survival time defined as

$$\hat{t}_{\mathsf{med}} = \inf\{t : \hat{S}(t) \le 0.5\}$$

By default, "survfit" prints out the estimate and 95% CI for the median.

۹.	•	< 8	P	•	•	2	•	۰.	Э.	Þ.	2	う	Q	C	

Ethan Ashby

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Hazard Estimation Via Smoothing

Suppose we are interested in estimating and examining the hazard function $h(t) := \lim_{\Delta t \to 0} \frac{P(t < T \le t + \Delta t | T \ge t)}{\Delta t}$.

Nelson-Aalen estimates of the hazard function will be 0 with bumps of height d_i/n_i at each event time t_i . This is very unstable estimator with high error.

$$\hat{h}_{NA}(t) = \sum_{i=1}^{D} \mathbb{I}(t_{(i)} = t) \cdot \frac{d_i}{n_i}$$

Smoothing helps us reduce noise by borrowing local information to produce a more stable estimator.

Ethan Ashby	
Lecture 3	

C
c

Hazard Estimation Via Smoothing: Illustration

▲ロト▲御ト▲臣ト▲臣ト 臣 の父(で

Ethan Ashby

Not necessary but interesting

In mathematical terms, smoothed hazard estimation is accomplished using a *kernel estimator*

$$\hat{h}(t) = \frac{1}{b} \sum_{i=1}^{D} K\left(\frac{t - t_{(i)}}{b}\right) \frac{d_i}{n_i}$$

Where $t_{(1)}, \ldots, t_{(D)}$ are the unique failure times, and K is a non-negative function that assigns more weight to d_i/n_i if t is close to an observed failure time $t_{(i)}$.

The *bandwidth b* controls how much smoothing is performed.

	Idl	AS	пру
l e	ctu	re :	3

Hazard Estimation Via Smoothing: In R

```
1 library(muhaz)
2 t.vec<-c(7,6,6,5,2,4)
3 cens.vec<-c(0,1,0,0,1,1)
4 result.smooth<-muhaz(t.vec,cens.vec,max.time=8, bw.grid
        =2.25, bw.method="global", b.cor="none") #smoothed
5 results.sparse<-pehaz(t.vec,cens.vec,width=1,max.time=8)
        #sparse
6 plot(result.smooth)
7 lines(results.sparse)</pre>
```

Set "bw.option"="local" to automatically choose level of smoothing that adapts to the frequency of events in different regions.

Smoothed Estimation of Survival Function

Recall that $S(t) = e^{-\int_0^t h(u)du}$ by definition. Hence, we can replace h(u) by its smoothed estimate $\hat{h}(u)$ to obtain a smoothed estimator of the survival function.

In R, we do this

1 haz <- result.smooth\$haz.est
2 times <- result.smooth\$est.grid
3 surv <- exp(-cumsum(haz[1:(length(haz)-1)]*diff(times)))</pre>

▲ロト▲聞▶▲臣▶▲臣▶ 臣 のへの

Ethan Ashby

Roadmap

1 Nonparametric Survival Curve Estimation

2 Nonparametric Estimation of Other Survival Quantities

3 Nonparametric comparison Survival Curves

▲日▼▲園▼▲園▼▲園▼ 園 めんの

Ethan Ashby

Motivation

Thus far, we have discussed nonparametric *estimation* of survival quantities of interest such as the survivor function, hazard function, etc.

In many practical situations, we may also wish to *test* whether the survivor curves are significantly different between two groups.

▲□▶▲□▶▲臣▶▲臣▶ 臣 のへで

Ethan Ashby

Testing equivalent survival between two groups

We propose a null hypothesis of H_0 : $S_0(t) = S_1(t)$.

We wish to develop a *test statistic* T which quantifies the discrepancy between $S_0(t)$ and $S_1(t)$ based on the data without relying on parametric assumptions.

A good starting point: Kaplan-Meier curves give us nonparametric estimates of $S_0(t)$, $S_1(t)$.

An idea: let *T* be the "distance" from group 1 K-M estimator, $\hat{S}_1(t)$, to pooled K-M estimator under H_0 , $\hat{S}(t)$.

Ethan Ashby

Logrank Test

		At risk		Events		
Row	$t_{(i)}$	n _{0i}	n _{1i}	d_{0i}	d_{1i}	
1	2	10	10	1	0	
2	5	9	10	1	0	
3	7	8	10	1	0	
4	8	7	10	1	1	
5	11	6	9	1	0	
÷	÷	÷	:	÷		

Under H_0 , we assume $S_0(t) = S_1(t) = S(t)$. Hence, we can calculate an *expected* event count for each cell under H_0 :

$$\boldsymbol{e}_{ji} := \underbrace{\left(\frac{n_{ji}}{n_{0i} + n_{1i}}\right)}_{\text{Prop at Risk at } t_{(i)}} \times \underbrace{\left(d_{0i} + d_{1i}\right)}_{\text{Total Failures at } t_{(i)}}$$

▲ロト▲聞と▲臣と▲臣と 臣 のへで

Ethan Ashby

æ

Logrank Test

		At risk Events		Expected Events			
Row	$t_{(i)}$	n _{0i}	n _{1i}	d _{0i}	d_{1i}	e_{0i}	e _{1i}
1	2	10	10	1	0	$\frac{10}{20} \times (1+0) = \frac{1}{2}$	$\frac{10}{20} \times (1+0) = \frac{1}{2}$
2	5	9	10	1	0	$rac{9}{19} imes (1+0) = rac{9}{19}$	$\frac{10}{19} \times (1+0) = \frac{10}{19}$
3	7	8	10	1	0	$\tfrac{8}{18}\times(1+0)=\tfrac{8}{18}$	$\frac{10}{18} \times (1+0) = \frac{10}{18}$
4	8	7	10	1	1	$rac{7}{17} imes (1+1) = rac{14}{17}$	$\frac{10}{17} \times (1+1) = \frac{20}{17}$
5	11	6	9	1	0	$rac{6}{15} imes (1+0) = rac{6}{15}$	$\frac{9}{16} \times (1+0) = \frac{9}{16}$
÷	:				:		÷

$$\operatorname{ogrank Statistic} = \frac{\left(\sum_{t_{(i)}} (d_{1i} - e_{1i})\right)^{2}}{\operatorname{Var}(d_{1i} - e_{1i})}$$

Ethan Ashby

L

Logrank Test: Some Extra Info

$$\mathsf{Logrank Statistic} = \frac{\left(\sum_{t_{(i)}} (d_{1i} - e_{1i})\right)^2}{\mathsf{Var}(d_{1i} - e_{1i})}$$

The variance formula is derived from a hypergeometric distribution which models the probability of d_{1i} group 1 failures in $d_{0i} + d_{1i}$ random draws when the size of group 1 is n_{1i} and the total at risk is $n_{1i} + n_{0i}$.

$$\operatorname{Var}(d_{1i} - e_{1i}) = \sum_{t_{(i)}} \frac{n_{0i}n_{1i}(d_{0i} + d_{1i})(n_{0i} + n_{1i} - d_{0i} - d_{1i})}{(n_{0i} + n_{1i})^2(n_{0i} + n_{1i} - 1)}$$

Ethan Ashby

Key Result!

When H_0 is true,

$$\mathsf{Logrank Statistic} = \frac{\left(\sum_{t_{(i)}} (\boldsymbol{d}_{1i} - \boldsymbol{e}_{1i})\right)^2}{\mathsf{Var}(\boldsymbol{d}_{1i} - \boldsymbol{e}_{1i})} \sim \chi_1^2$$

Hence, one can compare the logrank test statistic to the quantiles of a chi-square distribution with DOF=1.

If the statistic exceeds the $(1 - \alpha)$ quantile, we can reject the null hypothesis H_0 at level α , and claim the survival curves are significantly different!

		_	
Ethan Ashby			
Lecture 3			

Logrank Test: in R

```
1 library(survival)
2 tt<-c(6,7,10,15,19,25)</pre>
```

```
3 delta<-c(1,0,1,1,0,1)
```

```
4 trt<-c(0,0,1,0,1,1)
```

```
5 survdiff(Surv(tt,delta)~trt)
```

<ロト <問 > < 回 > < 回 > .

э

Ethan Ashby

Some Extensions

Look closely at the Logrank statistic

$$\frac{\mathsf{Logrank Statistic}}{\mathsf{Var}(\boldsymbol{d}_{1i} - \boldsymbol{e}_{1i})}^2 \sim \chi_1^2$$

Each event time is weighted equally. We can generalize to include weights that treat failure times differently

New Statistic =
$$\frac{\left(\sum_{t_{(i)}} w(i)(d_{1i} - e_{1i})\right)^2}{\operatorname{Var}(w(i)(d_{1i} - e_{1i}))} \sim \chi_1^2$$

▲ロト▲御ト▲臣ト▲臣ト 臣 のへで

Ethan Ashby

Some Extensions

Key Takeaways

- 1 Logrank test weights each failure time equally, Wilcoxon-Breslow/Traone-Ware/Peto weight earlier survival times more, Fleming-Harrison offers flexibility.
- 2 "Best test" is the one with the most power where do you expect the survival curves to be most different?
- **3** Choice **MUST** be made *a priori* to avoid p-hacking.

Ethan Ashby

Logrank Test Variants: in R

- 1 library(survival)
- 2 tt<-c(6,7,10,15,19,25)
- 3 delta<-c(1,0,1,1,0,1)
- 4 trt<-c(0,0,1,0,1,1)
- s survdiff(Surv(tt,delta)~trt, rho=0) #Logrank
- 6 survdiff(Surv(tt,delta)^{trt}, rho=1) # Peto-Prentice

Ethan Ashby

Lecture 3

(日)

Summary

- Nonparametric survival methods are often preferred because they avoid making unnecessary assumptions which can invalidate inference.
- 2 The Kaplan-Meier estimator is the most common estimator of the survival curve.
- Solution Nonparametric estimators of the the hazard function require smoothing to account for noisy data.
- The Logrank test and its variants are nonparametric tests of the equality of survival distributions.